Resumen poster nº 20

HIGH MECHANICAL AND CHEMICAL PERFORMANCE GLASS-CERAMICS TILE

O. R. K. Montedo¹; F. M. Bertan¹; H. F. da Rosa²; F. J. Floriano¹; D. Hotza^{2,3}; A. P. Novaes de Oliveira^{2,4}

E-mail: oscar@ctcmat.senai.br; E-mail: pedronovaes@emc.ufsc.br

¹Center of Technology in Materials (SENAI/CTCmat)
8802-330, Criciúma, SC, Brazil

²Graduate Program on Materials Science and Engineering (PGMAT),
Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil

³Department of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC),
88040-900, Florianópolis, SC, Brazil

⁴Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC),
88040-900, Florianópolis, SC, Brazil

ABSTRACT

A glass-ceramic based on spodumene- β and cordierite crystalline phases has been investigated by differential thermo analysis (DTA), x-ray diffraction (XRD), thermal linear shrinkage (TLS), scanning electron microcopy (SEM) and abrasion wear measurements. The parent glass frit, obtained by melting of natural raw material, was powdered and then formed and sintered so that ceramic tiles samples were obtained. Results showed that the obtained glass-ceramic tile with high abrasion wear and chemical resistances can be a potential candidate as a high performance ceramic floor tile.

Key words: Glass-ceramics, processing, chemical resistance, wear resistance.