Resumen poster nº 19

ALUMINIUM ANODIZING SLUDGE AS A RAW MATERIAL FOR THE PREPARATION OF ENGOBES AND GLAZES

M.Nuernberg Sartor¹, O. R. G. Montedo², j.A. Labrincha³, D. Hotza^{1,4}, A. P.Novaes de Oliveira^{1,5} E-mail: <u>pedronovaes@emc.ufsc.br</u>

¹Graduate Program on Materials Science and Engineering (PGMAT),
Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil

²Center of Technology in Materials (SENAI/CTCmat)

8802-330, Criciúma, SC, Brazil

³Department of Ceramics and Glass Engineering (CICECO), University of Aveiro,

3810-193 Aveiro, Portugal

⁴epartment of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC),

88040-900, Florianópolis, SC, Brazil

⁵Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC),

88040-900, Florianópolis, SC, Brazil

ABSTRACT

Characteristics and applications of aluminium sludge resulting from the aluminium anodizing processing have been considered. In particular, it emphasizes the potential and even the possibility of applying this residue as a raw material for the ceramic tile industry. Results show that the high alumina contents (range 89-97 wt-%) and composition constancy as well as the low particle size (range 1-56 μ m) make this residue a raw material source in engobes and ceramic glazes for ceramic tiles.

Key words: alumina, aluminium sludge, recycling, residues, and ceramics.