Ponencia 134 nueva versión

ANÁLISIS DE LOS PARÁMETROS DE PROCESO SOBRE LA MEDIA Y LA VARIABILIDAD DE LA DENSIDAD APARENTE POS SECADO DE REVESTIMIENTOS CERÁMICOS.

Dolly Santos Barbosa^(a,c), Benilson Vicente^(b),Dachamir Hotza^(c), Ricardo A. F. Machado^(c,d)

^a Universidad Nacional de Colombia, Departamento de Ingeniería Química, Bogotá, Colombia ^bServiço Nacional de Aprendizagem Industrial de Santa Catarina, SENAI/SC, Tijucas, SC, Brasil ^cUniversidade Federal de Santa Catarina, PGMAT/UFSC, Florianópolis, SC, Brasil ^dUniversidade Federal de Santa Catarina, CPGENQ/UFSC, Florianópolis, SC, Brasil

Resumen

En este trabajo se aplicó la estadística para analizar el comportamiento de los parámetros de proceso sobre la media y la variabilidad de la densidad aparente a seco de los soportes de revestimientos cerámicos tipo porcelanato, a nivel industrial. Adicionalmente, evaluar cómo se deben alterar las variables de control y encontrar las combinaciones ideales entre estas variables para obtener un producto con mejor calidad. El diseño experimental consideró tres factores (presión de prensado, temperatura del secador y velocidad de los rodillos del secador). Cada factor fue estudiado a dos niveles y se seleccionó un diseño factorial completo de 2³. Adicional al enfoque de la estadística clásica se complementó con un análisis de los parámetros sobre la media y la variabilidad de la densidad aparente a seco buscando la robustez de la operación de secado dentro de la línea de producción de los revestimientos cerámicos.

Palabras clave: densidad aparente a seco, secado, diseño estadístico experimental

Introducción

El proceso industrial analizado se refiere a la fabricación de gres porcelánico de tipo BI-a por vía húmeda, con molienda discontinua, mono-cocción y conformado por presión. En la Figura 1 se presentan las etapas secuenciales del proceso de producción mencionado. Sólo se encuentran explicitas las variables asociadas a las etapas de prensado y secado por ser estas el foco de este trabajo. La información completa sobre las variables asociadas a las otras etapas puede ser consultada en Santos *et al*, 2008.

La densidad aparente es utilizada para expresar el grado de compactación^[1] y determina algunas de las características más importantes del producto final^[2], posibilitando la existencia de defectos estructurales, dimensionales y superficiales, como^[3]:

- Corazón negro (defecto estructural) o defectos superficiales como pequeñas depresiones, burbujas y orificios que pueden ser causados por una excesiva compactación.
- Porosidad inadecuada es otro de los defectos estructuráis directamente ligada con la compactación.
- Luneta y ortogonalidad (defectos dimensionales) y trincas (estructurales) son posibles por la falta de homogeneidad de la densidad en la pieza. Así mismo, pueden existir trincas superficiales por falta de compactación puntual o por alta absorción de agua.

Otro estudio^[4] profundizó en la influencia de la densidad aparente de la pieza sobre etapas posteriores del proceso que inciden de forma determinante en la calidad del producto

terminado. En la Figura 2 se esquematizan estas influencias.

Figura 1. Diagrama de flujo de materia para el proceso de producción de gres porcelánico: Etapas de prensado y secado

En el análisis del proceso de fabricación de revestimientos cerámicos realizado para una línea de producción industrial desde el punto de vista de control^[5], se identificó cual era la variable controlada, como se realizaba su medición y cuál era la acción efectuada cuando la variable de interés se salía del comportamiento esperado. Destacando que aunque la densidad aparente a seco es una variable muy importante, por afectar (como se resaltó previamente en este trabajo) las características estéticas y funcionales del producto final, generalmente no es controlada. Adicionalmente se establece que:

- Se debe garantizar la homogeneidad de la densidad aparente en todo el soporte, en los diferentes soportes que salen de una misma cavidad y entre piezas situadas en diferentes cavidades.
- Es muy importante hacer un análisis global del proceso basándose en un estudio detallado por etapas.
- Las variables de interés pueden ser controladas manipulando variables en la misma etapa o actuando sobre etapas anteriores. La integración del proceso no puede ser obtenido sólo realizando estrategias de control en serie.

Figura 2. Efecto de la densidad aparente en las etapas del proceso¹

Como primer paso para determinar una posible ruta de acción para el control de la densidad aparente a seco, es realizar un análisis de ella frente a los factores que la afectan.

Las relaciones entre las variables de prensado con las características de las piezas obtenidas en crudo y en cocido han sido objeto de estudio de varias investigaciones. Específicamente para el análisis de la densidad aparente a seco estas investigaciones:

- Examinan las influencias de la distribución granulométrica del polvo atomizado, la densidad de empacotamiento de este polvo y la velocidad del carro alimentador en la prensa^{[6][7]};
- Establecen relaciones con posiciones, velocidades y presiones especificas de operación de la prensa hidráulica^[8];
- Se centran en las relaciones entre la humedad del polvo atomizado y la presión de prensado con la densidad aparente^{[1][7][9][10]}. En estos trabajos se plantea, entre otras consideraciones, que para un valor dado de presión de compactación, existe una relación lineal entre la compactación a seco y la humedad del polvo, excepto para valores altos de presión y humedad.

La mayoría de los esfuerzos se han centrado en la implementación en línea de un sensor de densidad aparente a seco, que sea continuo, automático, ambientalmente seguro y con la precisión requerida para ser utilizado en un lazo de control automático. Se han desarrollado estudios para medirla por ultrasonido^{[11][12]}, radiación^[13], por sensores extensiométricos^[4] y a través de la medición de la humedad. Las estrategias de control automático de la densidad aparente, existentes, se basan en que la compactación final depende casi exclusivamente de la presión de prensado y de la humedad del material, comprometiendo sólo variables de la etapa de prensado^{[14][2]}.

Los estudios mencionados sobre las relaciones entre las variables de prensado con las características de las piezas han sido realizados bajo condiciones controladas y con equipos de laboratorio. Es evidente la dificultad que se encuentra cuando se quiere hacer este tipo de análisis a nivel industrial. Existe una limitación, impuesta por las necesidades productivas de

¹ Adaptado de Blasco *et al*, 1992, p.326

las plantas industriales, para actuar sobre algunos parámetros y obtener significativas diferencias en las variables de respuesta. Algunas de estas limitaciones son:

- Los niveles de variación en los factores no siempre pueden ser alterados lo suficiente para obtener una respuesta medible y significativa, pero que no alteren las características del producto final. Para lograrlo, algunos cambios en las etapas de prensado y secado deben compensarse con otros en etapas posteriores para mantener las propiedades finales.
- El tiempo en que las variables pueden permanecer en un nivel diferente al de operación a veces no es suficiente para obtener una buena estabilización del proceso. De esta manera pueden ser enmascarados los cambios esperados.

Los estudios se han centrado sobre la etapa de presión y no se encontraron trabajos de análisis de la influencia de las variables de la etapa de secado sobre la densidad aparente a seco. Las etapas de secado y cocción juntas son responsables por el 95,5% del consumo energético total^{[15][16]}. Así inicialmente se realiza un análisis sobre la etapa de secado para obtener una metodología aplicable a la etapa de cocción posteriormente.

El objetivo final es determinar los parámetros importantes para la implementación de la tecnología de control y automatización aplicada al proceso de fabricación de revestimientos cerámicos, en una primera etapa con énfasis en el proceso de secado.

Fue utilizada la metodología de diseño estadístico de experimentos para analizar, a nivel industrial, los efectos de los factores tales como presión de compactación, temperatura en el secador, humedad del polvo y tiempo de residencia en el secador sobre las propiedades claves en los soportes cerámicos en las etapas de prensado y secado. Adicionalmente de aportar informaciones importantes para el mejor conocimiento del comportamiento del proceso, pueden ser sugeridas estrategias de control robustas basadas en el análisis estadístico de los factores sobre la media y las variaciones de las propiedades de las piezas cerámicas posterior a la etapa de secado. En esta primera fase se analizan el efecto de tres de esos factores sobre la densidad aparente a seco.

Material y Equipos

Para realizar el análisis próximo de las condiciones encontradas a nivel industrial, el trabajo experimental fue realizado en la planta modelo de producción de revestimientos cerámicos del SENAI/SC (*Serviço Nacional de Aprendizagem Industrial*) localizada en Tijucas, Santa Catarina, Brasil. La producción diaria aproximada en esa planta es de 1000m² de gres porcelánico en formato de 10x10 cm y la línea de producción es continua a partir de la etapa de prensado.

La formación del material fue realizada por prensado uniaxial diferenciada de duplo efecto. Se utilizó una prensa hidráulica de 530 ton y una línea de prensado con seis cavidades. La presión de prensado, **P**, fue calculada a partir de la presión manométrica leída en la prensa.

La operación de secado fue realizada con un secador horizontal de rodillos (de 1,6m de ancho por 8,4m de largo) mediante la circulación de aire caliente. La transferencia de calor es realizada aprovechando la combustión del gas natural en un quemador. El esquema del secador es presentado en la Figura 3. La temperatura del secador, T, es medida por medio de un termopar (Termopar 1 en la Figura 3), ubicado dentro de la cámara del secador. La velocidad de los rodillos, V, es una medida indirecta del tiempo de residencia de las piezas en el secador y es leída en Herz. La densidad aparente es medida por el método de Arquímedes.

Diseño Factorial

Para analizar el efecto de algunas variables (factores) sobre las propiedades de las piezas cerámicas en la etapa de secado, fueron elaborados dos diseños factoriales completos 2³, en la planta del SENAI/SC.

Figura 3. Esquema del secador utilizado

En el presente trabajo fue analizado el diseño experimental 2³ efectuado a humedad constante para conocer cuál es la condición de operación, a nivel industrial, más conveniente entre los niveles bajos y altos de los factores para conseguir una densidad aparente de al menos 1,95 g/cm³. Este valor fue escogido como un mínimo ideal. Ubicamos las condiciones de operación de este experimento (*) en el diagrama de isocompactación (densidad constante) presentado en la Figura 4 y podemos observar que los valores de densidad aparente para las condiciones de operación se encuentran alrededor de 1,95 g/cm³, el valor mínimo ideal seleccionado.

Figura 4. Diagrama de isocompactación² con condiciones de operación.

Del conocimiento del proceso de producción de revestimientos cerámicos y con la justificación presentada previamente se seleccionó como variable de respuesta la densidad aparente, a la salida del secador, D_{ap} [g/cm³], y como factores:

- **V**: Velocidad de los rodillos [Hz]. Representa el tiempo de residencia en el secador.
- T: Temperatura dentro de la cámara [°C]. Podía ser modificada manipulando la válvula que le corresponde al flujo de combustible (ver Figura 4).
- **P**: Presión de prensado [kgf/cm²].

Se escogieron dos niveles de variación para cada uno de los tres factores (ver Tabla 1) dando como resultado un diseño experimental 2³. Las combinaciones de ese diseño son presentadas en la Tabla 2 como matriz de diseño y en la Figura 5 como una vista geométrica. Para tener en cuenta las incertidumbres de las mediciones y obtener un estimativo del error experimental, se definieron dos replicas para cada ensayo.

FACTORES	Nivel bajo (-)	Nivel alto (+)		
τ [°C]	165	255		
P [kgf/cm²]	241	271		
<i>V</i> [Hz]	36	44		

²Esta figura fue adaptada de las curvas de isocompactación para piezas cerámicas prensadas y secas para una composición determinada obtenidas por Navarro *et al.* p. 271-274.

#exp	7 [°C]	P [kgf/cm²]	<i>V</i> [Hz]	etiqueta		
1	-	-	-	1		
2	+	-	-	t		
3	-	+	-	р		
4	+	+	-	tp		
5	-	-	+	v		
6	+	-	+	tv		
7	-	+	+	pv		
8	+	+	+	tpv		
Tabla 2. Diseño Experimental 2 ³ Matriz de Diseño						

Figura 5. Diseño Experimental 2³ Vista geométrica

(1)

Por restricciones operativas en la planta, durante la experimentación fue difícil ajustar los factores, **P** y **T**, en los valores de los niveles deseados. Se utilizó un valor medio (presentados en la Tabla 1) y para comprobar que la dispersión hacia el valor medio no era alta se calcularon los coeficientes de variación (menor que el 4%). En la Tabla 3 se encuentran los valores mínimos y máximos de cada intervalo, la **media**, la desviación estándar (**s**) y el coeficiente de variación (**Cv**) calculado como:

		Min	Max	media	S	<i>Cv</i> [%]	
<i>τ</i> [°C]	-	147	176	165	5,83	3,54	
	+	248	266	255	5,83	2,29	
P [kgf/cm²]	-	226	251	241	8,41	3,48	
	+	268	276	271	4,33	1,6	
H[%]		4,41	4,86	4,61	0,19	4,19	
Granulometría [%]		61,41	78,98	70,21	4,67	6,66	

 $Cv = \frac{s}{media} * 100$

Tabla 3. Coeficiente de variación de factores y de parámetros.

La humedad del polvo atomizado, **H**, y la granulometría son considerados parámetros por ser factores que se mantienen constantes para el experimento. Analizando los coeficientes de variación para estos parámetros se concluye que sus distribuciones tienen baja variabilidad al tener coeficientes de variación menores al 7% (ver Tabla 3). El análisis para la granulometría se realizó con los rechazos de la malla #65 (abertura de 212µm) que es considerada la fracción granulométrica predominante.

Los experimentos fueron realizados aleatoriamente, en la medida en que las condiciones de trabajo en la planta lo permitían. Sin embargo, las replicas realizadas fueron genuinas al no ser repeticiones de las mediciones en un ensayo y si reproducir los mismos métodos de medición y procedimientos.

Resultados y Discusión

Análisis de variancia:

Para analizar si el efecto de los factores y sus interacciones sobre la densidad aparente a seco es significativo estadísticamente se realiza un análisis de varianza (ANOVA) el cual utiliza la prueba F. Como herramienta de cálculo para el análisis de varianza se utilizó el programa estadístico MINITAB. La prueba F se basa en la comparación de las varianzas debidas a los factores y sus interacciones con el error puro. El resultado es presentado en la Tabla 4.

Teniendo en cuenta las limitaciones de una operación continua y a nivel industrial, para el cálculo del error puro se realizaron distintos números de replicados en puntos diferentes del espacio experimental siendo el error puro la varianza promedio global de estos replicados. El error puro es la variación obtenida cuando se realizan replicados genuinos y es calculada como:

$$e_{puro} = \frac{\sum S_i^2 GL_i}{\sum GL_i}$$

Donde S_i^2 es la varianza de los replicados en el punto experimental i y GL_i el número de grados de libertad del punto para el cálculo de la varianza de experimento i.

(2)

D _{ap}			F _{TAB}						
Fuente	GL	Suma de Cuadrados	Cuadrado Medio	Fc	0,01;1,7 = 12,25	0,025;1,7 = 8,07	0,05;1,7 = 5,59	0,1;1,7 = 3,59	0,25;1,7 = 1,57
Т	1	0,00032	0,00032	1,91					
Р	1	0,00191	0,00191	11,55					
V	1	0,00004	0,00004	0,25					
T*P	1	0,00076	0,00076	4,58					
T*V	1	0,00014	0,00014	0,84					
P*V	1	0,00207	0,00207	12,49					
RESIDUOS	8	0,0012	0,0002						
Falta de ajuste	1	0,00004	0,00004						
Error puro	7	0,00116	0,00017				: F c 3	> F тав	
Total	14	0,00643							

Tabla 4. Análisis de varianza para la densidad aparente a seco en función de la temperatura del secador (*T*), la presión de compactación (*P*) y la velocidad de los rodillos (*V*)

Donde, F_c es el valor F calculado con la relación de las varianzas y F_{TAB} es el valor de F obtenido³ de la distribución F, teniendo en cuenta los grados de libertad involucrados y el error estadístico tipo I.

En este análisis no fueron tenidas en cuenta las interacciones de orden tres porque en general, las interacciones entre tres o más variables son despreciables al predominar los efectos principales y las interacciones de orden inferior⁴.

Del ANOVA de la Tabla 4, se puede concluir que:

- a. Las variables que son significativas estadísticamente son la presión, P, y la temperatura, T_{r} con un nivel de significancia del 2,5% y 25% de error respectivamente.
- b. Las interacciones **P*****V** y **T*****V** son significativas con 1% y 10% de error respectivamente, y si tenemos en cuenta el principio de jerarquía⁵, se debe considerar que existe un efecto del factor **V** sobre **D**_{ap} y la velocidad de los rodillos, **V**, debe ser incluida en el modelo.

Ajuste del modelo

Para probar si existe o no falta de ajuste al modelo lineal utilizamos la hipótesis de que la suma de cuadrados de la falta de ajuste (SS_{fa}) es igual a la suma de los cuadrados debidos al error puro (SS_{ep}).

Si **SS**_{fa} > **SS**_{ep} entonces existe falta de ajuste.

³ El valor de F es obtenido de la Tabla IV del apendice de Montgomery, 2001, p 656-660.

⁴ *Ibid.:* p.245

⁵ El principio de jerarquía indica que si un modelo tiene un termino de alto orden (tal como A^2B) este debe tener también todos los términos de orden inferior que lo componen (en este caso A^2 y AB). *Ibid.*: p.203

Como $SS_{fa} = 3,71 \times 10^{-5}$ y $SS_{ep} = 1,6552 \times 10^{-4}$ entonces se cumple que $SS_{fa} < SS_{ep}$.

Además, calculamos el valor de F para el error puro: $F_c=0,22$ y como $F_{TAB}=1,57$ para 25% de error, entonces $F_c < F_{TAB}$. Si $F_c < F_{TAB}$ con un error de 25%, entonces $F_c < F_{TAB}$ para cualquier porcentaje de error.

Por lo anterior y en consecuencia no hay evidencia de falta de ajuste del modelo y en consecuencia se puede considerar que el modelo que se desprende del diseño experimental es lineal.

Análisis gráfica de la media y de la dispersión.

Vamos a analizar los factores e interacciones que son estadísticamente significativos. En las Figuras 6, 7 y 8 se encuentran los gráficos de la respuesta (**media** de D_{ap}) contra uno de los factores para los dos niveles del otro factor. Adicionalmente, se incluyen la dispersión en cada uno de los niveles para los dos factores.

En la figura 6 se puede observar que el efecto de **V** es muy pequeño, para los dos niveles de **P**, comparado con el efecto de **P** sobre la media de la densidad aparente, D_{ap} . En la Figura 7 se visualizan los efectos de **P** y **T**, que son comparativamente mayores que los de **V**. concluyendo que los factores que más afectan la **media** son la presión de compactación y la temperatura del secador.

Analizando los valores de las medias de D_{ap} , al pasar del nivel bajo para el alto, se encuentra que en las condiciones de los niveles bajos, tanto de T como de P, es obtenida la más alta densidad aparente con un valor medio de 1,95g/cm³. Esa condición es económicamente deseable, por ser un punto de operación con menos consumo de energía tanto en el prensado como en el secado.

Pero cuando se analiza la variabilidad en esa condición (Figura 7) se encuentra un valor de dispersión indeseablemente alto con una desviación estándar de 0,04 g/cm³.

Buscando un compromiso entre el mayor efecto sobre la media y la menor dispersión de datos, encontramos (ver Figuras 7 y 8) que para los niveles de presión y temperatura bajos (*T*- y *P*-) la dispersión disminuye notoriamente al trabajar en un nivel alto de la velocidad, *V*+.

Lo anterior pude explicar el resultado del ANOVA, con relación a la inclusión de V en el modelo por el alto nivel de significancia estadística de la interacción T^*V .

Conclusiones

A pesar de las limitaciones de ejecutar un experimento a nivel industrial, fue posible utilizar las herramientas de diseño estadístico de experimentos consiguiendo resultados favorables.

La combinación de herramientas estadísticas (Clásica y de Taguchi) fue clave para llegar a una conclusión práctica: Se puede afirmar que el máximo valor medio de la densidad aparente con la menor variabilidad se obtiene si se trabaja en las condiciones de operación que corresponden a un nivel alto de la velocidad de los rodillos, y a niveles bajos de la presión de compactación y la temperatura del secador. Este valor correspondió a 1,95g/cm³. Al verificarse que no existe falta de ajuste del modelo lineal que se desprende del diseño experimental, se puede considerar que esa condición es óptima.

Con los resultados obtenidos es posible incluir en el análisis otras propiedades de la etapa de secado e incluir la humedad del polvo atomizado como factor de análisis, con el objetivo de proponer estrategias de control robustas aplicadas, en principio, a la etapa de secado para luego hacerla extensiva a otras etapas del proceso de fabricación de revestimientos cerámicos.

Agradecimientos

Los autores agradecen al SENAI/SC (*Serviço Nacional de Aprendizagem Industrial*) localizada en Tijucas (Santa Catarina, Brasil) por sus instalaciones en cuya planta de producción de revestimientos cerámicos fue realizado el trabajo experimental y por el apoyo técnico; a la "Coordenacão de Aperfeicoamento de Pessoal de Nível Superior – CAPES/Brasil" por patrocinar este trabajo; a la Universidad Nacional de Colombia por dar la oportunidad de realizar los estudios de doctorado a Dolly Santos en la Universidad Federal de Santa Catarina, Brasil y al estudiante Leandro Pelegrini por su ayuda y colaboración en la ejecución de los experimentos.

Referencias

- 1. Navarro, J.E.; Amoros, J.L.; Monzo, M. *Tecnología Cerámica: Pastas cerámicas*. vol 2, Instituto de Química Técnica, Universidad de Valencia, España.
- Mallol, G. "Control y automatización en la industria cerámica. Evolución y Perspectivas". Qualicer 2006. IX Congreso Mundial de la Calidad del Azulejo y el Pavimento Cerámico. Castellón: Cámara Oficial de Comercio, Industria y Navegación, España, 2006. vol 1 pp Con 47-72.
- 3. Lucas, F. "Processos produtivos em revestimentos cerâmicos: variáveis de processo e possíveis causas de defeitos". *Cerâmica Industrial*, vol. 9, p. 7-20, São Paulo, 2004.
- 4. Blasco, A; Llorens, D.; Mallol,-G.; Jarque, J.C. "Estudio Experimental De La Determinación, En Continuo Y En Tiempo Real, De La Compactación En Seco De Piezas Conformadas Por Prensado Unidireccional". *Qualicer 92*, Castellón, España, 1992 p. 325 a 345
- Santos Barbosa, D.; Da Silva, J. E.; Machado, R. A. F.; Hotza, D. "Controle e Automação na Indústria Cerâmica: Estudo de Caso na Fabricação de Porcelanato no Brasil". *Cerâmica Industrial*, vol. 13, p. 23-30, São Paulo, 2008.
- Dos Santos, B.D.; Saviato, D.; Martins, E.; De Mello, E.; Sartor, R.; Barbosa, T.; Cargnin, M.; De Noni, A.Jr.; Modesto, C.O.; Tassi, R. "Estudo da Influência das Variáveis do Pó Atomizado e da Prensa nas Características Técnicas do Produto Final". *Cerâmica Industrial*, 12 (6) Novembro/Dezembro, São Paulo, 2007.
- 7. Bagán, V.; Enrique, J.E, Mallol, G.; Sanchez, E. "Gres Porcelánico. Influencia De Las Variables De Proceso Sobre La Calidad Del Producto Acabado". *Qualicer 90,* Castellón, España, 1990, p.

357-389

- 8. Sánchez, J.; Portolés, J.; Negre, F.; Mallol, G.; Monzó, M.; Monfort, E. "Estudio De La Dinámica Del Ciclo De Prensado Y Su Influencia Sobre La Compactación De Baldosas Cerámicas Mediante La Sonorización De Una Prensa Industrial". *Qualicer 94*, Castellón, España, 1994 p.63-91
- De Paula, G.R.; Quinteiro, E.; Boschi, A. O. "Efeito do teor de umidade e da pressão de prensagem sobre as características de revestimentos cerâmicos". *Cerâmica Industrial*, vol. 2, p. 28-31, São Paulo, 1997.
- 10. Novaes de Olivera A.P., Manfredini, T. "Un Modelo Para Predecir La Resistencia Mecánica De Una Pieza Cerámica En Crudo". *Qualicer 96*, Castellón, España, 1996, p.439-448
- Cantavella, V.; Llorens, D.; Mezquita, A.; Moltó, C.; Bhardwaj, M.C.; Vilanova, P.; Ferrando, J.; Maldonado-Zagal, S. "Uso de la técnica de ultrasonidos para medir la densidad aparente de las baldosas en crudo y optimizar el proceso de prensado". *Qualicer 2006. IX Congreso Mundial de la Calidad del Azulejo y el Pavimento Cerámico.* Castellón: Cámara Oficial de Comercio, Industria y Navegación, España, vol. 2, p. PBC 165-178, 2006.
- Pietroni, P.; Revel G.M. "Ultrasonidos por laser para el control de calidad em La industria cerâmica". Qualicer 2008. X Congreso Mundial de la Calidad del Azulejo y el Pavimento Cerámico. Castellón: Cámara Oficial de Comercio, Industria y Navegación, España, vol. 3, p PBC 345-358, 2008.
- Amorós, J.L.; Feliú, C.; Llorens, D.; Cantavella, V.; Mezquita, A. "Medida no destructiva de la densidad aparente de piezas en crudo mediante absorción de rayos X". Qualicer 2006. IX Congreso Mundial de la Calidad del Azulejo y el Pavimento Cerámico. Castellón: Cámara Oficial de Comercio, Industria y Navegación, España, vol. 2, p. PBC 69-82, 2006.
- Portolés, J.; Sanchez, J; Soler, C; Ballester, E. "Automatización del Ciclo de Prensado en Semiseco en el Proceso de Compactación de Baldosas Cerámicas, Mediante la Implantación de un Lazo de Control en una Prensa Hidráulica Industrial". *Qualicer 96*, Castellón, España, 1996, p. 673-675
- Alves, H.J.; Melchiades, F.G. Boschi, A.O. "Levantamento Inicial do Consumo de Energias Térmica e Elétrica na Indústria Brasileira de Revestimentos Cerâmicos". Cerâmica Industrial, 12 (1/2) Janeiro/Abril, São Paulo, 2007
- 16. Enrique, J.E. Mallol, G. Monfort, E. e Cantavella, V. "Racionalização de Energia em Fornos de Revestimentos Cerâmicos". *Cerâmica Industrial*, 5 (1) Janeiro/Fevereiro, São Paulo, 2000
- 17. Montgomery, D.C. *Design and Analysis of Experiments.* 5th ed., John Wiley & Sons Inc., New York, 2001.
- 18. Taguchi, G. System of experimental design: engineering methods to optimize quality and minimize costs. 2nd ed., New York, 1987